
Graphics for Free

Martin C. Carlisle
Computer Science Department

US Air Force Academy, CO 80840-6234
mcc@cs.usafa.af.mil

1 Introduction

Students find computer graphics one of the most interesting topics in computer science. Unfortunately, writing
programs with graphics requires understanding concepts that are usually beyond the scope of an introductory
computer science course. For example, in Windows 95, a program that uses graphics must have an event loop that
dispatches messages to the appropriate handler. Event loops, messages and handlers are well beyond the grasp of
someone just learning about variables! As a result, programming assignments for introductory courses tend to use
no graphics, or simple ANSI graphics (see, e.g. Feldman and Koffman [1]). These programs compare unfavorably
to the graphics of games most students are accustomed to using, and motivation to program in an introductory
course may be lost.
 Ideally, we would li ke to be able to have students write programs that have more appealing interfaces, yet do
not require a large amount of additional conceptual complexity. In fact, the best case would be to have the student
write a program as if it were a simple text-based program, and have the compiler automaticall y add a graphical
interface. Languages that provide overloading, such as Ada 95, allow us to accomplish precisely that.
 This paper describes a library, Graphics_110 (named in honor of our introductory course, CS 110), which,
using overloading, replaces the standard I/O libraries in Ada 95: Ada.Text_IO, Ada.Float_Text_IO, and
Ada.Integer_Text_IO. By following a simple contract and replacing call s to the standard libraries with call s to
Graphics_110, the student obtains a program with a Windows-style interface without ever having to worry about
the implementation detail s. Although we use Ada 95 for this paper, the ideas extend to any programming
language that provides subtypes and overloading.
 The next section describes the “contract” the programmer must follow to use the library and the third section
describes the implementation of Graphics_110. In each section, we describe how Graphics_110 was used with a
battleship game implemented in our introductory course. The final section presents conclusions and ideas for
future work.

2 The Contract

Graphics_110 was designed for simple text-based games. These games share the properties that they interact with
the user using text prompts, and display some sort of game board. Common examples of these types of games
include tic-tac-toe, role-playing maze games, checkers and battleship. The library provides the user with a 6x80
text window, and a 22x33 grid of bitmaps. (There’s nothing magical about these numbers; they simply fit nicely
on our students’ monitors). Text prompts appear in the text window, and dialog boxes are used for input. The
game board is displayed in the bitmap grid.
 Since we are converting text-based games with no graphics capabiliti es, we assume that text written to the
screen is in one of two forms: either a text sequence (a prompt or informational message), or a display of the game
board. The entire game board must be drawn at once. While drawing the game board, the programmer must use
defined constant values rather than putting the characters directly. For example, Put(Item => Ship) is
allowed, but Put(Item => ‘A’) is forbidden. Ship is then declared to be a constant Icon_Type whose
value is ‘A’ in the text-based program. (Icon_Type is declared to be a subtype of Character). An example
usage of the library is given in Appendix B.
 To convert a program from text-based to Windows-based, one first replaces the WITH and USE clauses for the
Text_IO libraries with WITH and USE clauses for Graphics_110. (Although experienced Ada programmers tend
to frown on the use of the USE clause, we allow it in our introductory course for the sake of brevity). Then, it is

only necessary to comment out the declaration of the subtype Icon, and all the constant declarations of that type.
These constants will be declared and associated with bitmaps in the instructor-provided Graphics_110 package.
 In summary, we require the student to only make slight changes to meet our contract and then to convert to a
Windows-based program. First, we require them to draw the entire game board at once. This does not seem like a
large restriction, as in a text-based game, the program usually alternates between prompts and drawing the whole
board. Second, we require use of a subtype for everything that will be displayed on the game board. The process
for using Graphics_110 necessitates this, as each of those constants will be redefined in the package provided by
the instructor. Finall y, after the program is working in a text-based mode, simply by changing the WITH and USE
clauses, and commenting out some declarations, the program will provide a graphical interface.

3 Implementation Details

The original version of Graphics_110 was implemented in Ada 95, using the Microsoft Windows API. To enable
broader use of the software, it has been reimplemented using the TASH [3] binding to Tcl/Tk [2]. This section
describes initiali zation, how events are handled, and also what is done for each type of call to a library routine.
 Ada 95 permits packages the definition of code bodies within packages that are executed before the main
procedure begins. Graphics_110 uses its code body to open the window, and display a blank grid. By doing this,
we keep with our philosophy of requiring as few changes as possible from a text-based program; the student can
not accidentall y forget to call the initiali zation routine. (If the library were to be ported to a language that did not
have this feature, one could simply keep a boolean variable that keeps track of whether or not initiali zation has
been done. This variable would then have to be checked on each library call , and the initiali zation routine called if
necessary.)
 A key assumption that we make is that student programs tend to be I/O bound. As a result, it is not necessary
to have the student write an event loop or do polli ng. Instead each library routine processes any pending events
when it is called. Again, by doing this we minimize changes to the student’s initial program.
 There are four procedures provided by the Graphics_110 interface (these replace similarly specified procedures
from the standard Text I/O library provided with Ada 95): Put , New_Line , Get , and Skip_Line . Put is
overloaded, takes a single argument of type Integer , Float , Character , or String and displays it to the
screen (we display these in the text window). We have also added an overloaded version of Put that takes an icon
as an argument (to be displayed in the game board area). New_Line advances the cursor to the next line. Ada 95
also has a Put_Line procedure, which combines Put and New_Line for a single string. We provide a similar
procedure in Graphics_110 by simply calli ng our Put procedure followed by our New_Line procedure. It has an
optional argument that is the number of lines to advance. Get is also overloaded, and is used to read either an
Integer , Float , Character , or String from the keyboard. Its counterpart, Skip_Line , is used to read
and discard all characters typed at the keyboard until the next time the ENTER key is pressed.
 To implement these four procedures, we must keep track of the following global state variables:
LastWasIcon (did the last call to Put have an icon as its argument), LastWasGet (was Get the last
Graphics_110 routine called), TextScreen (copy of all text currently displayed in text window), Bi tmapArray
(array of all i cons currently displayed on game board), CurrentTextRow and CurrentTextCol (where
cursor is in text window), and CurrentBitmapRow and CurrentBitmapCol (where last icon was displayed
on game board).
 For icons, a Put is performed by updating the appropriate location in the BitmapArray , and then
modifying CurrentBitmapCol . Since as previously mentioned, our contract requires the student to display the
game board all at once, we can use LastWasIcon to determine whether or not to return to the upper left corner
of the game board. If LastWasIcon is false, there has been text displayed, and we must be beginning again in
the upper left corner. If incrementing CurrentBitmapCol would cause it to exceed its maximum possible
value, New_Line is called to go to the next row.
 Other Puts are performed by first (if necessary) creating the string representation of the output (for numbers
this is done by calli ng the appropriate Ada Text I/O library routine) and then calli ng our Put routine for strings.
To put a string, we simply modify the array TextScreen , placing the characters of the string at the location
specified by CurrentTextRow and CurrentTextCol . The current row is then updated accordingly, and both
LastWasIcon and LastWasGet are set to false. As with icons, New_Line is called if necessary to get text
wrap.

 For a New_Line , if LastWasIcon is false, CurrentTextRow is incremented, and CurrentTextCol is
set to 1. Otherwise, CurrentBitmapRow and CurrentBitmapCol are updated. Following this,
LastWasGet is set to false, and an internal routine, UpdateWindow , is called to process any pending events
and redraws the window. LastWasIcon remains unchanged.
 For a Get , a dialog box is displayed. The user then may type the input, and must press ENTER or use the
mouse to cli ck “ok.” Graphics_110 then converts the input to the appropriate type (again using standard Ada Text
I/O library routines). LastWasGet is set to true and LastWasIcon is set to false. Finall y the value is returned.
 Usually in our students’ programs, following each Get is a Skip _Line , which requires the student to press
ENTER. Since the dialog box already required the student to press ENTER, this would be redundant.
Consequently, if LastWasGet is true, the Skip _Line is ignored, and LastWasGet is reset to false. There are,
however, occasions when Skip _Line is used to pause the program (e.g. if a long text message is being displayed,
and the user needs to have control over the speed of scrolli ng). To accommodate this, if LastWas Get is false,
Skip _Line displays a dialog box which waits for the user to press ENTER or cli ck “ok” before the program
continues.
 By keeping the state variables and using them, as above, we are able to obtain the desired Windows behavior
using the same sequence of call s as in the text-based program.

4 Conclusions and Future Work

Our implementation of Graphics_110 allowed us to successfull y convert the text-based game written by
introductory students to a graphical version. The students have often expressed an interest in being able to write
programs containing graphics; however, we have found the amount of detailed coding required to be too great for
an introductory course. The Graphics_110 package enables our students to add a limited amount of graphics and
Windows behavior to their programs.
 We now have three complete student projects implemented using the Graphics_110 library, Battleship,
Connect Four, and Othello. Each semester, we have the students, working in groups of 2 or 3, implement a game.
The students are given the graphics library, and implement the game logic and a computer strategy. The computer
strategy procedures are pitted against each other in a tournament. A picture showing a student’s Battleship
program during execution is given in Appendix A. Complete sources for the library and these three projects are
available at ftp://ftp.usafa.af.mil/pub/dfcs/carli sle/usafa/graph110/index.html.
 Graphics_110, while providing a very easy way for students to add graphics to programs, is limited to text
games that have some sort of grid. In the future, we would li ke to explore how to provide a simple abstraction for
more complicated graphical programs, such as animations.

References

1. Feldman, M. and Koffman, E. Ada 95: Problem Solving and Program Design, Second Edition. Addison-
Wesley, Reading, Mass., 1996.

2. Ousterhout, J. Tcl and the Tk Toolkit, Addison-Wesley, Reading, Mass., 1994.
3. Westley, T. TASH: A Free Platform-Independent Graphical User Interface Development Toolkit for Ada. In

Proceedings of Tri-Ada ’96. (1996), 165-178.

Appendix A

Following is a picture of the Graphics_110 version of battleship during execution:

Appendix B

 A portion of a Battleship text-based program that is ready to be used with the Graphics_110 library is shown
below. This procedure draws the game board, displaying the computers’ ships if the boolean
Display_Computers is set to true.

SUBTYPE Icon IS Character;

Sea : CONSTANT Icon :='~';
Hit : CONSTANT Icon :='H';
Miss : CONSTANT Icon :=' ';
Ship : CONSTANT Icon :='S';

Blank : CONSTANT Character :=' ';

TYPE Digits IS ARRAY (1..10) OF Icon;
Number : CONSTANT Digits :=
 ('1','2','3','4','5','6','7','8','9','0');

TYPE Board_Array IS ARRAY (1..22,1..33) OF Icon;

PROCEDURE Draw_Boards (
 User_Board : IN Board_Array;
 Computer_Board : IN Board_Array;
 Display_Computers: IN Boolean) IS

BEGIN -- Draw_Boards

 -- Leave room for row headings
 Put (Item => Blank);
 Put (Item => Blank);

 -- Display user board col headings
 FOR Column IN 1..Num_Columns LOOP
 Put (Item => Number(Column));
 END LOOP;

 -- Leave space between boards
 FOR Column IN 1..6 LOOP
 Put (Item => Blank);
 END LOOP;

 -- Display computer col headings
 FOR Column IN 1..Num_Colum ns LOOP
 Put (Item => Number(Column));
 END LOOP;
 New_Line;

 FOR Row IN 1..Num_Rows LOOP
 Put (Item => Blank);
 Put (Item => Number (Row));

 FOR Col IN 1..Num_Columns LOOP
 Put(Item=> User_Board(Row,Col));
 END LOOP;

 FOR Col IN 1..5 LOOP
 Put (Item => Blank);
 END LOOP;
 Put (Item => Number (Row));

 FOR Column IN 1..Num_Rows LOOP
 IF Computer_Board(Row,Col)=Ship AND Display_Computers=False THEN
 Put (Item => Sea);
 ELSE
 Put (Item => Computer_Board(Row,Col));
 END IF;
 END LOOP;

 New_Line;

 END LOOP;

END Draw_Boards;

